3.1.60 \(\int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx\) [60]

3.1.60.1 Optimal result
3.1.60.2 Mathematica [A] (verified)
3.1.60.3 Rubi [A] (verified)
3.1.60.4 Maple [A] (verified)
3.1.60.5 Fricas [A] (verification not implemented)
3.1.60.6 Sympy [F(-1)]
3.1.60.7 Maxima [A] (verification not implemented)
3.1.60.8 Giac [A] (verification not implemented)
3.1.60.9 Mupad [B] (verification not implemented)

3.1.60.1 Optimal result

Integrand size = 21, antiderivative size = 124 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=-\frac {5 x}{a^2}+\frac {12 \sin (c+d x)}{a^2 d}-\frac {5 \cos (c+d x) \sin (c+d x)}{a^2 d}-\frac {10 \cos ^2(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\cos ^2(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {4 \sin ^3(c+d x)}{a^2 d} \]

output
-5*x/a^2+12*sin(d*x+c)/a^2/d-5*cos(d*x+c)*sin(d*x+c)/a^2/d-10/3*cos(d*x+c) 
^2*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*sec( 
d*x+c))^2-4*sin(d*x+c)^3/a^2/d
 
3.1.60.2 Mathematica [A] (verified)

Time = 1.65 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.60 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=\frac {\sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \left (-360 d x \cos \left (\frac {d x}{2}\right )-360 d x \cos \left (c+\frac {d x}{2}\right )-120 d x \cos \left (c+\frac {3 d x}{2}\right )-120 d x \cos \left (2 c+\frac {3 d x}{2}\right )+516 \sin \left (\frac {d x}{2}\right )-156 \sin \left (c+\frac {d x}{2}\right )+342 \sin \left (c+\frac {3 d x}{2}\right )+118 \sin \left (2 c+\frac {3 d x}{2}\right )+30 \sin \left (2 c+\frac {5 d x}{2}\right )+30 \sin \left (3 c+\frac {5 d x}{2}\right )-3 \sin \left (3 c+\frac {7 d x}{2}\right )-3 \sin \left (4 c+\frac {7 d x}{2}\right )+\sin \left (4 c+\frac {9 d x}{2}\right )+\sin \left (5 c+\frac {9 d x}{2}\right )\right )}{192 a^2 d} \]

input
Integrate[Cos[c + d*x]^3/(a + a*Sec[c + d*x])^2,x]
 
output
(Sec[c/2]*Sec[(c + d*x)/2]^3*(-360*d*x*Cos[(d*x)/2] - 360*d*x*Cos[c + (d*x 
)/2] - 120*d*x*Cos[c + (3*d*x)/2] - 120*d*x*Cos[2*c + (3*d*x)/2] + 516*Sin 
[(d*x)/2] - 156*Sin[c + (d*x)/2] + 342*Sin[c + (3*d*x)/2] + 118*Sin[2*c + 
(3*d*x)/2] + 30*Sin[2*c + (5*d*x)/2] + 30*Sin[3*c + (5*d*x)/2] - 3*Sin[3*c 
 + (7*d*x)/2] - 3*Sin[4*c + (7*d*x)/2] + Sin[4*c + (9*d*x)/2] + Sin[5*c + 
(9*d*x)/2]))/(192*a^2*d)
 
3.1.60.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.10, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.619, Rules used = {3042, 4304, 27, 3042, 4508, 27, 3042, 4274, 3042, 3113, 2009, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x)}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle -\frac {\int -\frac {2 \cos ^3(c+d x) (3 a-2 a \sec (c+d x))}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \int \frac {\cos ^3(c+d x) (3 a-2 a \sec (c+d x))}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \int \frac {3 a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {2 \left (\frac {\int 3 \cos ^3(c+d x) \left (6 a^2-5 a^2 \sec (c+d x)\right )dx}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {3 \int \cos ^3(c+d x) \left (6 a^2-5 a^2 \sec (c+d x)\right )dx}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\frac {3 \int \frac {6 a^2-5 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {2 \left (\frac {3 \left (6 a^2 \int \cos ^3(c+d x)dx-5 a^2 \int \cos ^2(c+d x)dx\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\frac {3 \left (6 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^3dx-5 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3113

\(\displaystyle \frac {2 \left (\frac {3 \left (-\frac {6 a^2 \int \left (1-\sin ^2(c+d x)\right )d(-\sin (c+d x))}{d}-5 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (\frac {3 \left (-5 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-\frac {6 a^2 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {2 \left (\frac {3 \left (-5 a^2 \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {6 a^2 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {2 \left (\frac {3 \left (-\frac {6 a^2 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}-5 a^2 \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )}{a^2}-\frac {5 \sin (c+d x) \cos ^2(c+d x)}{d (\sec (c+d x)+1)}\right )}{3 a^2}-\frac {\sin (c+d x) \cos ^2(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

input
Int[Cos[c + d*x]^3/(a + a*Sec[c + d*x])^2,x]
 
output
-1/3*(Cos[c + d*x]^2*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^2) + (2*((-5*Co 
s[c + d*x]^2*Sin[c + d*x])/(d*(1 + Sec[c + d*x])) + (3*(-5*a^2*(x/2 + (Cos 
[c + d*x]*Sin[c + d*x])/(2*d)) - (6*a^2*(-Sin[c + d*x] + Sin[c + d*x]^3/3) 
)/d))/a^2))/(3*a^2)
 

3.1.60.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3113
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
and[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] 
 && IGtQ[(n - 1)/2, 0]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
3.1.60.4 Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.62

method result size
parallelrisch \(\frac {43 \left (\cos \left (d x +c \right )+\frac {14 \cos \left (2 d x +2 c \right )}{129}-\frac {\cos \left (3 d x +3 c \right )}{129}+\frac {\cos \left (4 d x +4 c \right )}{258}+\frac {73}{86}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-40 d x}{8 a^{2} d}\) \(77\)
derivativedivides \(\frac {-\frac {8 \left (-\frac {5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{2}-\frac {10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}-20 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d \,a^{2}}\) \(101\)
default \(\frac {-\frac {8 \left (-\frac {5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{2}-\frac {10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}-20 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d \,a^{2}}\) \(101\)
risch \(-\frac {5 x}{a^{2}}+\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{4 a^{2} d}-\frac {15 i {\mathrm e}^{i \left (d x +c \right )}}{8 a^{2} d}+\frac {15 i {\mathrm e}^{-i \left (d x +c \right )}}{8 a^{2} d}-\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{4 a^{2} d}+\frac {2 i \left (15 \,{\mathrm e}^{2 i \left (d x +c \right )}+27 \,{\mathrm e}^{i \left (d x +c \right )}+14\right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}+\frac {\sin \left (3 d x +3 c \right )}{12 a^{2} d}\) \(143\)
norman \(\frac {-\frac {5 x}{a}+\frac {21 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}+\frac {80 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 a d}+\frac {23 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{a d}+\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{6 a d}-\frac {15 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}-\frac {15 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{a}-\frac {5 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{a}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} a}\) \(171\)

input
int(cos(d*x+c)^3/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/8*(43*(cos(d*x+c)+14/129*cos(2*d*x+2*c)-1/129*cos(3*d*x+3*c)+1/258*cos(4 
*d*x+4*c)+73/86)*tan(1/2*d*x+1/2*c)*sec(1/2*d*x+1/2*c)^2-40*d*x)/a^2/d
 
3.1.60.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.87 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=-\frac {15 \, d x \cos \left (d x + c\right )^{2} + 30 \, d x \cos \left (d x + c\right ) + 15 \, d x - {\left (\cos \left (d x + c\right )^{4} - \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 33 \, \cos \left (d x + c\right ) + 24\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate(cos(d*x+c)^3/(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
-1/3*(15*d*x*cos(d*x + c)^2 + 30*d*x*cos(d*x + c) + 15*d*x - (cos(d*x + c) 
^4 - cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 33*cos(d*x + c) + 24)*sin(d*x + c 
))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 
3.1.60.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**3/(a+a*sec(d*x+c))**2,x)
 
output
Timed out
 
3.1.60.7 Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.67 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=\frac {\frac {4 \, {\left (\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {15 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}} + \frac {\frac {27 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {60 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}}{6 \, d} \]

input
integrate(cos(d*x+c)^3/(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
1/6*(4*(9*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c 
) + 1)^3 + 15*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/(a^2 + 3*a^2*sin(d*x + 
c)^2/(cos(d*x + c) + 1)^2 + 3*a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + a^ 
2*sin(d*x + c)^6/(cos(d*x + c) + 1)^6) + (27*sin(d*x + c)/(cos(d*x + c) + 
1) - sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 60*arctan(sin(d*x + c)/(co 
s(d*x + c) + 1))/a^2)/d
 
3.1.60.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.87 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=-\frac {\frac {30 \, {\left (d x + c\right )}}{a^{2}} - \frac {4 \, {\left (15 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 20 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3} a^{2}} + \frac {a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 27 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

input
integrate(cos(d*x+c)^3/(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
-1/6*(30*(d*x + c)/a^2 - 4*(15*tan(1/2*d*x + 1/2*c)^5 + 20*tan(1/2*d*x + 1 
/2*c)^3 + 9*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^3*a^2) + ( 
a^4*tan(1/2*d*x + 1/2*c)^3 - 27*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d
 
3.1.60.9 Mupad [B] (verification not implemented)

Time = 13.86 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.09 \[ \int \frac {\cos ^3(c+d x)}{(a+a \sec (c+d x))^2} \, dx=-\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-28\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-60\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+40\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-16\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+30\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (c+d\,x\right )}{6\,a^2\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3} \]

input
int(cos(c + d*x)^3/(a + a/cos(c + d*x))^2,x)
 
output
-(sin(c/2 + (d*x)/2) - 28*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2) - 60*cos 
(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2) + 40*cos(c/2 + (d*x)/2)^6*sin(c/2 + ( 
d*x)/2) - 16*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2) + 30*cos(c/2 + (d*x)/ 
2)^3*(c + d*x))/(6*a^2*d*cos(c/2 + (d*x)/2)^3)